\qquad
Date: \qquad

Assignment 08.02: Sine and Cosine of Complementary Angles

Write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth.

A) $\operatorname{Sin} R=$
B) $\operatorname{Sin} \mathrm{Q}=$
C) $\operatorname{Cos} R=$
D) $\operatorname{Cos} \mathrm{Q}=$
E) What did you notice about the sines and cosines you found? Do you think this relationship will be true for any pair of acute angles in a right triangle? Explain.

Find the given trigonometric ratios. Write each ratio as a fraction and as a decimal rounded to the nearest hundredth.

1. $\sin R, \cos R$

2. $\cos D, \cos E$

3. $\sin M, \sin N$

\qquad
\qquad
4. Given that $\sin 15^{\circ} \approx 0.259$, write the cosine of a complementary angle. \qquad
5. Given that $\cos 62^{\circ} \approx 0.469$, write the sine of a complementary angle. \qquad

Find the value of x to the nearest tenth.
6.

7.

8.

9. You are building a skateboard ramp from a piece of wood that is 3.1 meters long. You want the ramp to make an angle of 25° with the ground. To the nearest tenth of a meter, what is the length of the ramp's base? What is its height?

10. Error Analysis Three students were asked to find the value of x in the figure. The equations they used are shown at right. Which students, if any, used a correct equation? Explain the other students' errors and then find the value of x.
\qquad
\qquad
\qquad
\qquad
Lee's equation: $\sin 57^{\circ}=\frac{x}{15}$
Jamila's equation: $\cos 33^{\circ}=\frac{15}{x}$
Tyler's equation: $\sin 33^{\circ}=\frac{x}{15}$

